

Departamento de Humanidades y Artes

Carrera: ESPECIALIZACIÓN EN TECNOLOGÍAS DE FABRICACIÓN DIGITAL

Materia: INGENIERÍA INVERSA

Profesores: PETROSINO, JORGE

Días y horarios del curso: VIERNES DE 18 A 22HS

Año y Cuatrimestre: 1ER AÑO – 1ER CUATRIMESTRE

Plan y Cohorte: 2024

Fundamentación:

La ingeniería inversa es un proceso que permite comprender los principios estructurales, tecnológicos y funcionales de un producto, o sistema, existente a los efectos de introducir una mejora. Conceptualmente se basa en el análisis y reconocimiento de la trazabilidad de los procesos mediante un método de razonamiento abductivo donde, partir del hecho, se intenta llegar a una hipótesis tecnológica, para luego ser optimizada. En la práctica profesional, esta definición se lleva a cabo fundamentalmente para efectuar mejoras parciales o integrales en la eficiencia del producto, a partir de lograr obtener la digitalización del objeto mediante un escáner 3D. La obtención de un modelo digital, admite la edición a partir de un software paramétrico. Esta mejora incremental puede ser verificada a través de ensayos y prototipos funcionales mediante el uso de equipos de fabricación digital.

"Análisis de un sistema para identificar sus componentes actuales y las dependencias que existen entre ellos, para extraer y crear abstracciones de dicho sistema e información de su diseño" (Chifofsky, 1990)

"El proceso de analizar el código, documentación y comportamiento de un sistema para identificar sus componentes actuales y sus dependencias para extraer y crear una abstracción del sistema e información de diseño. El sistema en estudio no es alterado, sino que se produce conocimiento adicional acerca del sistema" (SEI, 2004)

Contenido y Vinculación con los objetivos de la Carrera:

Contenidos mínimos:

Usos. Métodos de digitalizado 3D: brazos, palpadores, máquinas de medición ópticas, etc. Tipos de escáner y técnicas de uso (escritorio, de mano). Software de escaneado. Software de edición, corrección y ajuste geométrico. Uso de técnicas de diagnóstico por imágenes. Herramientas CAD para modelado a partir de palpadores.

Los contenidos mínimos de la asignatura se basan en la comprensión de las diferentes tecnologías aplicadas a los procesos de ingeniería inversa, orientados a la captación y reconstrucción de formas preexistentes, como insumo de los procesos productivos.

Como la carrera centra sus objetivos en la potenciación de los profesionales con perfiles técnicoproyectuales y su inserción como operadores tecnológicos en el tejido industrial de la región, la comprensión de estos procesos se vuelve determinante para la articulación entre las problemáticas en estudio y sus ámbitos operacionales.

Objetivos de la actividad curricular:

Analizar y ensayar, sobre la práctica real, casos de mejora de sistemas a través del conocimiento práctico del proceso de ingeniería inversa.

Objetivos Generales:

Introducir al estudiante en los procesos de ingeniería inversa, sus usos y beneficios. Reconocer y operar software de escaneado tridimensional y herramientas dedicadas a la digitalización y edición de modelos digitales. Procesos de fabricación digital para la obtención de prototipos

Objetivos específicos:

- Conocer las herramientas informáticas destinadas al proceso de ingeniería inversa relacionado con la fabricación digital.
- Introducirse en la operación y uso de escáner 3d y fotogrametría.
- Comprender las limitantes de superficie, textura y color para lograr obtener relevamientos óptimos de la morfología de piezas tridimensionales.
- Operar las herramientas informáticas para optimizar las superficies escaneadas.
- Diferentes equipos de relevamientos de superficies según su morfología y tamaño y destino industrial.
- Importar e introducirse en el uso profesional de software paramétrico para el modelado tridimensional de piezas escaneadas
- Requisitos y consideraciones para optimizar el resultado de un modelo digital dirigido al prototipeado rápido
- Ensayos de procesos de fabricación digital en modelos tridimensionales procedentes de piezas escaneadas 3d.

Metodología de Trabajo

Metodología de Trabajo: Teórico / Práctico

Carga horaria semanal: 8 encuentros durante dos meses. Combinando clases en el aula híbrida,

clases presenciales y no presenciales.

Carga horaria discriminada: 4 hs por encuentro

Modalidad	Carga teórica	Carga práctica	Total	%
Presencial	8	8	16	50
No Presencial	8	8	16	50
Total	20	12	32	100

Metodología de evaluación: La Actividad curricular se aprueba mediante examen final

Modalidad de evaluación: La asignatura se evalúa mediante la aprobación de un conjunto de trabajos prácticos distribuidos a lo largo de la cursada y de un trabajo práctico final a realizar en forma individual. La resolución de los trabajos prácticos durante la cursada está orientada a evaluar contenidos teórico-prácticos de diferentes temáticas que se aglutinan luego en el trabajo final.

De este modo se aborda la ingeniería inversa de un modo integral, práctico y teórico que permite a través del un ensayo real verificar los conocimientos impartidos en la materia.

Requisitos de aprobación y/o promoción: El estudiante deberá ser alumno regular, cumplimentar con el 75 % de asistencia, entregar en tiempo y forma los diferentes componentes solicitados dentro del plazo acordado.

Tipo de modalidad: Presencial.

Localización: Sede Central en el Laboratorio de Modelos y Maquetas, con material complementario en el aula específica de la asignatura dentro del Campus Virtual de la UNLa. Con el soporte del aula híbrida del Departamento de Humanidades y Artes.

Contenidos programáticos:

- 1. Introducción al proceso de Ingeniería Inversa. Origen, estado actual, potenciales futuras aplicaciones.
- Fotogrametría. Revisión histórica de la fotogrametría gráfica, analítica y digital. Análisis de programas informáticos que permiten modelar objetos 3D utilizando fotogrametría. Alineamiento, nube dispersa, nube densa, determinación de superficies. Exportación e importación de archivos del modelo y texturas.
- 3. Escaneo 3D de objetos. Tipos de escáner 3d, calibración, metodologías utilizadas, sistemas de referencia. Fotogrametría digital. Selección de equipos adecuados según morfología, tamaño y destino de la pieza. Preparación de piezas para escaneado 3d según equipo de tecnología.

- 4. Análisis de la información de modelos 3D digitales. Mapas de profundidad, voxels, nubes de puntos, mallas. Gráficos de trama y gráficos vectorizados. Interpolación tipo spline. Curvas de Bezier. Modelos poligonales. Modelos NURB. Formatos de archivos de modelos 3D. Exportación e importación del modelo digital en formato STL.
- 5. Caracterización paramétrica. Optimización. Edición de mallas y proceso de mejora de las superficies. Softwares específicos para el procesamiento de archivos provenientes de escaneado 3D. Introducción al modelado paramétrico.

Actividades Prácticas:

Los trabajos prácticos se enfocan en desarrollar una participación activa sobre las problemáticas de cada unidad, con un nivel progresivo de complejidad.

- TP1 Identificación de problemas técnicos
- TP2 Autómata escribiente
- TP3 Exploración del formato STL de modelos 3D
- TP4 Registro de un modelo 3D mediante fotogrametría y comparación con escaner 3D
- TP5 Exploración del modelado paramétrico (Grasshoper)

Se dispone del Laboratorio de Fabricación Digital de la UNLa (ubicado físicamente en el Taller de Modelos y Maquetas) a disposición para el desarrollo de las prácticas especiales, situado en el Edificio Hernández. La modalidad de supervisión de las prácticas será por seguimiento del equipo docente de la asignatura.

Bibliografía Obligatoria

- 1. Wang, W. (2011). Reverse engineering: Technology of reinvention. Crc Press.
- 2. Vukašinović, N., & Duhovnik, J. (2019). Advanced CAD modeling. Explicit, parametric, free-form CAD and Re-engineering. Cham: Springer Nature Switzerland AG.
- 3. Krick, E. V. (1996). Introducción a la ingeniería y al diseño en la ingeniería. Mexico, Limusa
- 4. Foster, S., & Halbstein, D. (2014). Integrating 3D modeling, photogrammetry and design. London: Springer.

Bibliografía Optativa

- 1. Ballarin, M., Balletti, C., & Vernier, P. (2018). REPLICAS IN CULTURAL HERITAGE: 3D PRINTING AND THE MUSEUM EXPERIENCE. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(2).
- 2. Herbert, S. (1973). Las ciencias de lo artificial. Instituto Tecnológico de Massachussets, Gráficas Víctor, Barcelona.
- 3. Gibson, I. (Ed.). (2006). Advanced manufacturing technology for medical applications: reverse engineering, software conversion and rapid prototyping. John Wiley & Sons.
- 4. Raja, V., & Fernandes, K. J. (Eds.). (2007). Reverse engineering: an industrial perspective. Springer Science & Business Media.

- 5. Gibson, I., Rosen, D. W., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17). Cham, Switzerland: Springer.
- 6. Monroy, M., Arciniegas J. L. y J. Rodríguez, Caracterización de herramientas de ingeniería inversa. Información Tecnológica, 23(6), 31-42 (2012)
- 7. Favre, L., MDA-Based, Reverse Engineering, Reverse Engineering Recent Advances and Applications, A.C. Telea, 55 -83, (2012).
- 8. Luhmann, T., Robson, S., Kyle, S., & Boehm, J. (2019). Close-range photogrammetry and 3D imaging. de Gruyter.
- 9. Kraus, K. (2007). Photogrammetry: geometry from images and laser scans. Walter de Gruyter.
- 10. Linder, W. (2016). Digital photogrammetry: A practical course. Berlin: Springer.
- 11. Bryden Douglas. CAD y Prototipado Rápido en el Diseño de Producto. Promopress, Barcelona 2014.
- 12. Bernier Samuel N.; Luyt Bertier; Reinhard Tatiana. Make: Design for 3D Printing: Scanning, Creating, Editing, Remixing, and Making in Three Dimensions. Ed. Make Magazine. 2015